
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=reco20

Journal of Ecotourism

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/reco20

Pavement treatment type influences visitor
experiences related to vehicular road sound in
Death Valley National Park

Zachary D. Miller, William L. Rice, Peter Newman, B. Derrick Taff, Jake
Gottschalk, Caleb Meyer & J. Adam Beeco

To cite this article: Zachary D. Miller, William L. Rice, Peter Newman, B. Derrick Taff, Jake
Gottschalk, Caleb Meyer & J. Adam Beeco (2021) Pavement treatment type influences
visitor experiences related to vehicular road sound in Death Valley National Park, Journal of
Ecotourism, 20:3, 211-223, DOI: 10.1080/14724049.2020.1856856

To link to this article:  https://doi.org/10.1080/14724049.2020.1856856

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 23 Dec 2020.

Submit your article to this journal 

Article views: 1688

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=reco20
https://www.tandfonline.com/journals/reco20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14724049.2020.1856856
https://doi.org/10.1080/14724049.2020.1856856
https://www.tandfonline.com/action/authorSubmission?journalCode=reco20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=reco20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14724049.2020.1856856?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14724049.2020.1856856?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/14724049.2020.1856856&domain=pdf&date_stamp=23 Dec 2020
http://crossmark.crossref.org/dialog/?doi=10.1080/14724049.2020.1856856&domain=pdf&date_stamp=23 Dec 2020
https://www.tandfonline.com/doi/citedby/10.1080/14724049.2020.1856856?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/14724049.2020.1856856?src=pdf
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ABSTRACT
In many parks and protected areas around the globe, reducing
human-caused sounds is a critical component to providing
quality visitor experiences. However, very little research examines
the effect of vehicular road sounds on visitor experiences.
Additionally, emerging pavement treatments have the potential
to provide a new management tool for reducing impacts from
vehicular road sounds. In this research, intercept surveys of
visitors in Death Valley National Park and dose-response methods
are used to identify the impacts of vehicular road sounds using
normative concepts. The effects of different pavement treatments
on visitor experiences are also evaluated. Results show that
increasing vehicular road sounds have a negative impact on
visitor experiences. Furthermore, Type II microsurfacing pavement
treatments have a larger negative impact on visitor experiences
than other pavement treatments. From this, managers of parks
and protected areas can better understand the impacts of vehicle
road sounds on visitor experiences, and possibly further reduce
impacts through the use of pavement treatments.
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1. Introduction

Providing quality visitor experiences is one of the core responsibilities of park and pro-
tected area managers (Miller et al., 2019). Increasingly, research shows that natural
sounds are an important component of visitor experiences (Francis et al., 2017; Mace
et al., 2004). When considering the management of natural sounds, park and protected
area managers generally focus on reducing human-caused sounds because they often
detract from quality visitor experiences (Freimund et al., 2011; Miller et al., 2014;
Pilcher et al., 2009). Considering the increasing scarcity of areas free from human-
caused sound (Buxton et al., 2017), it is imperative that managers have science-informed
strategies to address pervasive human-caused sounds in parks and protected areas.
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The U.S. federal government as well as the National Park Service (NPS) recognize
natural sounds as protected resources (National Parks Air Tour Management Act,
2000; National Parks Overflights Act, 1987; NPS, 2006). Specifically, the NPS Director’s
Order 47 outlines soundscape preservation and noise management. This order defines
noise as ‘an unwanted or undesired sound, often unpleasant in quality, intensity or
repetition.’

Recent studies examining the impacts of human-caused sound on visitor experiences
in national parks largely considered vocalizations (e.g. Marin et al., 2011; Pilcher et al.,
2009) and overflight sounds (e.g. Iglesias-Merchan et al., 2015; Miller et al., 2018;
Taff et al., 2014, 2015; Weinzimmer et al., 2014). Although one study examined vehicular
sound on attitudes about scenic evaluations in a lab-based setting (e.g. Benfield et al.,
2018), no research has examined how vehicular road sound impacts the visitor experi-
ence in national parks. This is despite high-levels of visitor exposure to vehicular road
sound (Miller, 2008; Park et al., 2010) and its claimed importance in national park
soundscape management (Francis et al., 2017; Miller, 2008; Weinzimmer et al., 2014).

Even with a limited understanding of the impacts on visitor experiences in parks and
protected areas, some managers initiated efforts to reduce vehicular road sounds. This
includes mass transportation and limiting vehicle use (Manning & Anderson, 2012).
Mass transportation systems are particularly common approach in the NPS with 16% of
all units having some form of mass transportation (Davis, 2016). However, mass transit
systems and restrictions on visitor use are not feasible or desirable in all parks due to con-
siderations like increasing visitor use due to better access (via shuttles) and infringing on
visitor values of parks (Lawson et al., 2011; Manning, 2003; Manning, 2011).

A potential new solution for reducing impacts from road sound in parks and protected
areas is found in Death Valley National Park (DEVA) where managers are using a variety
of pavement treatments (NPS, 2019b). These treatments can potentially reduce impacts
from road sound by altering friction and vibrations between tires and roads (Praticò &
Anfosso-Lédée, 2012). Given the unknown impacts of road sound on visitor experience
coupled with emerging pavement technologies, the purpose of this study is to evaluate
how pavement technologies and vehicular road sounds influence visitor experiences.
To address this purpose, a single research question was developed:

R1: How does visitor experience related to road sound conditions change with different
pavement treatments?

1.1. Thresholds for understanding visitor experiences in parks and protected
areas

Understanding andmanaging visitor experiences in parks and protected areas is most often
done through Management-By-Objectives frameworks (MBO) (Manning, 2011; Miller
et al., 2019). These MBO include Limits of Acceptable Change (Stankey et al., 1984), the
Visitor Experience and Resource Protection framework (Manning et al., 1995), and the
more recent Interagency Visitor Use Management Framework (IVUMF, 2016).

One of the tenants of visitor use management in parks and protected areas is that
accommodating any form or amount of visitor use leads to some resource or visitor
use impact (Hammitt et al., 2015; Manning, 2011). Because of this, the critical question
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is not if impact will occur, but rather how much impact is acceptable (Miller et al., 2019;
Wagar, 1964). In MBO, the level at which resource conditions become unacceptable is
the threshold (IVUMF, 2016). Thresholds are a common thread among different MBO
that allow scientists and managers to evaluate how changing resource conditions
impact visitor experiences (Miller et al., 2019). In research on visitor experiences, norma-
tive concepts are often used to develop thresholds (Manning, 2011; Vaske et al., 1986).
Developing statistical models from the measurement of normative concepts allows man-
agers and scientists to understand how changing resource conditions impact visitor
experience and identify the point where resource conditions are no longer acceptable
to visitors (Manning, 2011; Miller et al., 2019; Pilcher et al., 2009).

Figure 1 provides a conceptual normative model of thresholds commonly used in
MBO. The x-axis is the range of resource conditions, which in this study is the peak
level of A-weighted decibels (dBA). The y-axis is the normative evaluation of resource
conditions, generally measured as acceptability (Miller & Freimund, 2018; Pilcher
et al., 2009; Vaske et al., 1986). A neutral line is plotted horizontally in the middle of
the y-axis. As the acceptability of resource conditions change, the point where acceptabil-
ity crosses over the neutral line is the threshold (IVUMF, 2016; Manning, 2011; Miller
et al., 2019). When viewed collectively, any resource condition rated above the neutral
line is within the range of acceptable conditions and infers satisfactory visitor experiences
(Manning, 2011).

2. Materials and methods

2.1. Study site

Death Valley National Park (DEVA) is located in southeastern California and southwes-
tern Nevada and comprises the largest federally designated wilderness area in the contig-
uous 48-states of the U.S. (NPS, 2019a). DEVA provides visitors with a variety of

Figure 1. Conceptual model of normative thresholds commonly used in MBO.
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experiences, including hiking, backpacking, bicycling, canyoneering, and sightseeing.
This study focused on two locations for sampling visitors selected in consultation with
DEVA managers: Mesquite Flats (Mesquite Flat Sand Dunes) and Golden Canyon
(Figure 2). These sites were selected because they provide road-proximate access to
areas frequented by visitors.

2.2. Development of soundclips

Audio of vehicular road sound along Badwater Road in DEVA was collected by the
Natural Sounds and Night Skies Division of the NPS and the U.S. Department of

Figure 2. (Colour online) Map of study location showing visitor surveying sites and road noise audio
sampling sites.

214 Z. D. MILLER ET AL.



Transportation’s Volpe National Transportation Systems Center at four locations (Figure 2)
and represented four different types of pavement (Table 1). Sound pressure levels were
measured using microphones placed 50 feet (15.24 m) from the center of the travel lane
and 5 feet (1.52 m) above the roadway plane. For more detailed reporting on the road
noise sampling methods employed to collect data used in this study, please refer to Rochat
and Lau (2013). As with previous research (Abbott et al., 2016; Miller et al., 2020; Pilcher
et al., 2009), sound clips were 30 s long and included a fade in and fade out portion. Sound-
clips were calibrated using dBA to mimic human hearing. In total, 30 soundclips were devel-
oped to form a pool that ranged in peak sound pressure levels from 60.9 to 74.4 dBA.

2.3. Data instrument

A quantitative survey measured visitor responses to vehicular road sound using dose-
response methods (Miller et al., 2019; Pilcher et al., 2009). Dose–response methods
exposed visitors to a range of resource conditions in a way that would not be possible
in a typical field-based setting (Miller et al., 2019; Pilcher et al., 2009). Using these
methods, researchers provided a precise amount of ‘dose’ (in this case, various levels
of road noise) to respondents for evaluation over a range of resource conditions.
These methods are particularly useful for developing thresholds for sounds in visitor
use management (Miller et al., 2019; Pilcher et al., 2009).

From the pool of 30 soundclips (see Section 2.2 above), each respondent was provided
with a subset of five soundclips for evaluation. Soundclips were selected using a random
starting point and presentation proceeded in a random order. This process allows
researchers to obtain visitor responses over a wider-range of resource conditions
without an order biasing effect or increasing visitor burden (Gibson et al., 2012; Miller
et al., 2019). Soundclips were administered to visitors using Bose© noise-cancelling head-
phones and were calibrated to ensure proper sound level. The survey stated,

We will ask you to listen to five brief recordings of sounds. As you listen to each recording,
imagine how you would have felt if you had heard the sounds in the recording during your
visit to Death Valley’s front country (only). Please listen to each recording in its entirety; the com-
puter will automatically advance to a page with questions after each recording is finished playing.

Respondents were asked to rate each soundclip on the acceptability of the sound at the
sampling location on a 9-point scale, where 1 = very unacceptable and 9 = very accepta-
ble. Demographic data was also collected to describe the sample characteristics.

2.4. Survey administration

University-trained researchers administered the survey to visitors at DEVA using Qual-
trics© offline data collection and a tablet from 16 October to 12 November 2018.

Table 1. Audio collection site descriptions.
Location Site code Pavement type

Site 1 S01 3/8′′ chipseal
Site 2 S02 1/4′′ chipseal
Site 3 S03 Type II microsurfacing
Site 4 S04 Type III microsurfacing
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Surveying at Golden Canyon generally took place from 9 am to 5 pm. Due to its popu-
larity as a location for sunrise and sunset recreational activities, surveying at Mesquite
Flat Sand Dunes was equally divided into am and pm sampling days, with sampling
windows ranging from 7 am to 3 pm and 11 am to 7 pm respectively. This sampling sche-
dule was adapted slightly on occasion due to changing daylight hours and sporadic dust
storms. As visitors exited a trail, they were intercepted by a research technician and asked
to participate in a 10-minute survey informing the management of DEVA. If they
declined, only observational data was collected (respondent gender and sampling
location) for non-response bias purposes due to administrative barriers. If the respon-
dent accepted the survey, the research technician would begin with the administration
of the instrument. If a group was intercepted, the member with the next upcoming birth-
day was asked to participate.

2.5. Data analysis

A mixed linear model using maximum likelihood estimation was used to develop vehi-
cular road sound thresholds (Ferguson, 2019; Miller et al., 2019). Acceptability was the
dependent variable in this model. Fixed effects in the model included sound pressure
level and pavement treatment. The respondent was a random effect in this model,
thus controlling for any unique variation associated with an individual (Ferguson,
2019; Miller et al., 2019). Version 25 of IMB©SPSS© was used for data analysis, and
ggplot2 was used to graph the results in R (Wickham, 2016).

3. Results

Final sampling totaled 1,135 groups. Of those, 15% (n = 168) were unable to participate
due to a language barrier. From the remaining 967 groups, 667 individuals (69%) agreed
to the participate in the study. There was no difference in the rate of respondents and
non-respondents by survey location (χ2 = 1.474, p = 0.479). There was a difference
between respondents and non-respondents for gender (χ2 = 23.798, p = 0.000) with
men being more likely to refuse. However, this effect was minimal (phi = .176) and
likely does not represent a meaningful issue towards the quality of our data (Vaske,
2008).

3.1. Sample characteristics

Of the n = 667 respondents surveyed, 48% were female. The average age of respondents
was 43 years old, with a range from 18 to 83 years old. Visitors tended to be from large
urban centers, with 57% of the sample reporting residence in medium cities (50,000–1
million people) or major metropolitan areas (over 1 million people). Foreign visitors
made up the majority of the sample, with 57% of visitors being residents of countries
other than the United States (Figure 3). Respondents were surveyed from six continents:
Europe (29 countries, n = 298), North America including the USA (2 countries, n = 250),
Asia (8 countries, n = 25), Oceania (3 countries, n = 15), Latin and South America (2
countries, n = 4), and Africa (2 countries, n = 3). Respondents from 39 U.S. states were
surveyed (Figure 3).
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3.2. Mixed linear model for evaluating the influence of sound pressure level
from different pavement types on visitor experience and developing thresholds

Table 2 shows statistical testing for the fixed effects in the model. Overall, sound pressure
level and treatment type were significant predictors of acceptability ratings. Additionally,
the interaction between sound pressure level and treatment type was also significant. The
significance of the interaction term means that at least one of the slopes, and therefore
thresholds, for the pavement treatments were significantly different from at least one
other slope.

Table 3 shows the results for the estimated fixed effects in the model. Overall, sound
pressure level shows a significant, negative relationship with acceptability ratings. This
means that as the sound pressure level increases, acceptability decreases regardless of
pavement type. Several effects for pavement type indicate whether the acceptability for
pavement type differs from the base pavement type (1/4′′ chipseal is the base) in the
model. Only the interaction for Type II microsurfacing was significant, meaning that
the slope for Type II microsurfacing was significantly different from 1/4′′ chipseal.
Further interpreted, Type II microsurfacing was rated lower in acceptability when com-
pared to 1/4′′ chipseal.

Figure 3. (Colour online) Map showing the geographical distribution of respondents.

Table 2. Statistical testing of fixed effects in acceptability model.
Source Numerator df Denominator df F p-value

Intercept 1 2882.463 271.291 <.001
Sound pressure level 1 2800.294 114.980 <.001
Treatment type 3 2800.120 2.896 .034
Sound pressure level*treatment type 3 2800.271 2.810 .038
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The results from the estimated fixed effects (Table 4) are more clearly interpreted
using regression equations and predicted thresholds. Overall, the regression equations
show that visitor thresholds are significantly lower for Type II microsurfacing treatments.
None of the other treatments were significantly different. Using the regression equations
to predict the minimum acceptability threshold (acceptability = 4.99), Type II microsur-
facing has a minimum threshold of 33.296 dBA, where the other pavement types range
from 46.731 to 53.814 dBA. The predicted values from the mixed linear model are further
graphed below in Figure 4.

4. Discussion

The purpose of this research was to explore the role of pavement type and vehicular road
sound on the visitor experience in a protected area. Using threshold concepts, the results
show that acceptability of vehicular road sound was predicted by both peak sound
pressure levels and pavement treatment types. Additionally, the interaction effect
between sound pressure level and pavement treatments demonstrates differential
effects on visitor experience. In the face of increasing anthropogenic sounds in even
the most remote areas (Buxton et al., 2017; Rice et al., 2020), this research provides
several insights related to the management of natural sounds and visitor experiences
in parks and protected areas.

Although long assumed (Miller, 2008), this study empirically shows for the first time
that road sound negatively influences visitor experience in a U.S. national park setting.
This finding largely aligns with a suite of previous research that demonstrate the deleter-
ious impacts of anthropogenic sounds on visitor experiences in parks and protected areas
(Francis et al., 2017; Freimund et al., 2011; Mace et al., 2004; Manning et al., 2018; Miller,
2008; Miller et al., 2018; Pilcher et al., 2009). Regardless of pavement treatment, any road
sound above 53.8 dBA is considered unacceptable to DEVA visitors. However, it must be

Table 3. Estimates of fixed effects in acceptability thresholds model.
Fixed effect Estimate Std. error p-value Lower bound Upper bound

Intercept 11.340 .915 <.001 9.546 13.133
Sound pressure level −.118 .013 <.001 −.143 −.092
Type II microsurfacing −4.552 1.638 .005 −7.764 −1.339
Type III microsurfacing −1.731 1.336 .195 −4.351 .889
3/8′′ chipseal −2.705 1.419 .057 −5.487 .077
1/4′′ chipseal – – – – –
Sound pressure level*Type II microsurfacing .064 .024 .007 .017 .111
Sound pressure level*Type III microsurfacing .024 .019 .216 −.014 .061
Sound pressure level*3/8′′ chipseal .040 .020 .052 −.001 .080
Sound pressure level*1/4′′ chipseal – – – – –

Table 4. Regression equations by pavement type for sound acceptability.
Pavement type Regression equation Minimum threshold

Type II microsurfacing Acceptability = 6.788 + (−.054)*SPL level 33.296 dBA
Type III microsurfacing Acceptability = 9.609 + (−.094)*SPL level 49.138 dBA
3/8′′ chipseal Acceptability = 8.635 + (−.078)*SPL level 46.731 dBA
1/4′′ chipseal Acceptability = 11.340 + (−.118)*SPL level 53.814 dBA
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acknowledged that road sound conditions below 53.8 dBA are still having a negative
impact on at least some visitors in DEVA.

Perhaps most interesting, the significant interaction effect indicates that visitors have
different thresholds for road sound levels when considering pavement treatment, but the
only significant difference was for Type II microsurfacing. Further interpreted, this
means that even at the same sound pressure level, Type II microsurfacing treatments
result in lower levels of vehicle road sound thresholds. This is an important finding
because other research partners on this project found Type II microsurfacing to be, on
average, the quietest pavement (Hastings et al., 2020).

Most research studying visitor experiences related to sounds in parks and protected
areas focuses exclusively on sound pressure levels as a predictor of acceptability and
thus thresholds (Miller et al., 2019; Pilcher et al., 2009). This current study suggests
that not only does sound pressure level influence the visitor experience, but sound qual-
ities like roughness also play a role (Miller et al., 2019).

Managers can use this information when planning for visitor use in parks and pro-
tected areas. For instance, it is now clear that vehicle road sounds have a negative
impact on visitor experiences. In certain cases, managers may want to focus on vehicle
road sounds as an indicator of visitor experiences instead of or in addition to more fre-
quently used indicators, like pedestrian-caused sound (e.g. Marin et al., 2011; Pilcher
et al., 2009) and aircraft sound (e.g. Iglesias-Merchan et al., 2015; Miller et al., 2018;
Taff et al., 2014, 2015; Weinzimmer et al., 2014). Additionally, managers may want to
avoid Type II microsurfacing pavement treatments in areas where impacts to visitor
experience are a consideration. Although 3/8′′ chipseal pavement treatment was not

Figure 4. (Colour online) Predicted thresholds of vehicular road sound vary by pavement type.
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significantly different (p < .05) from the 1/4′′ chipseal, the relatively close p-value (p
= .057) and lower calculated threshold (46.73 dBA) may warrant consideration of
restricting this pavement treatment over 1/4′′ chipseal or Type III microsurfacing
when trying to reduce impacts on visitor experiences.

4.1. Limitations and future research

The results of this research should be interpreted with several limitations. Sound clips were
developed from a restricted range (60.9 to 74.4 dBA) of recordings. Although these con-
ditions are reflective of actual roadside noise in DEVA, expanding the sound clip pool
to reach the lower and higher ends of conditions (e.g. <60.9 dBA or >74.4 dBA) may
further our understanding of vehicle road sound thresholds. Due to the transient nature
of sounds from passing vehicles, we used peak sound pressure level as our fixed effect
instead of average sound pressure level of the sound clip. Other aspects of sound clips,
such as tire or vehicle type, were not evaluated in this research. Further inquiry into
these aspects may provide additional insights. Lastly, sampling was confined to two sites
during the peak season of visitor use in DEVA. Expanding sampling efforts to include
other times and locations may enrich these findings.

Future research is needed to further develop and apply these findings. Several limit-
ations noted above could be part of this, including an expanded pool of sound clips
and the role of tire and vehicle type on thresholds. Additionally, alternatives like shuttles
(Manning & Anderson, 2012), reduced speed limits (Newton et al., 2018), and sound bar-
riers (e.g. walls and vegetation) can also reduce impacts of vehicle road sound on visitor
experiences. Managers need science-informed ways to make decisions about these
alternatives, and future research revealing the trade-offs visitors are willing to make to
achieve quieter conditions in parks and protected areas is needed. Spatial modeling of
vehicle road sound could be coupled with visitor experience data to provide a regional
display of social conditions in the area, thus allowing managers to see which locations
have the highest levels of negative impacts on visitors. Lastly, other aspects should be
evaluated in relation to vehicle road noise, such as the effect of road noise on visitor
attention or mental health and well-being (Abbott et al., 2016; Francis et al., 2017).

5. Conclusions

This study shows that increasing vehicle road sounds have a negative impact on the
visitor experience in DEVA, and that pavement treatments can affect the evaluation of
vehicle road sounds – even at the same sound pressure level. Using mixed-linear
models, Type II microsurfacing treatments had a significantly larger negative effect on
the visitor experience than other pavement types. The model shows that any sound
pressure level, regardless of pavement type, above 53.81 dBA becomes unacceptable to
users. These findings can help managers of parks and protected areas make informed
decisions about managing soundscapes for visitor experiences.
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